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We study the spectral properties of a spin-boson Hamiltonian that depends on two continuous parameters
0���� �interaction strength� and 0���� /2 �integrability switch�. In the classical limit, this system has
two distinct integrable regimes, �=0 and �=� /2. For each integrable regime we can express the quantum
Hamiltonian as a function of two action operators. Their eigenvalues �multiples of �� are the natural quantum
numbers for the complete level spectrum. This functional dependence cannot be extended into the noninte-
grable regime �0���� /2�. Here level crossings are prohibited and the level spectrum is naturally described
by a single �energy sorting� quantum number. In consequence, the tracking of individual eigenstates along
closed paths through both regimes leads to conflicting assignments of quantum numbers. This effect is a useful
and reliable indicator of quantum chaos—a diagnostic tool that is independent of any level-statistical analysis.
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I. INTRODUCTION

Classical integrability of a system with two degrees of
freedom guarantees that the Hamiltonian can be expressed as
a piecewise smooth function of two action coordinates
H�p1 ,q1 ; p2 ,q2�=HC�J1 ,J2�. No such functional relation ex-
ists if the system is nonintegrable �1–4�.

Geometrically speaking, for a parametric system with pa-
rameters subject to an integrability condition, there exist
complete foliations of invariant tori in phase space for all
parameter points in the integrable regime. Throughout the
nonintegrable regime the foliation is partially destroyed.
Some tori are replaced by chaotic trajectories, cantori, and
unstable periodic trajectories. The surviving tori in the non-
integrable regime are no longer dense anywhere in phase
space. Whereas each surviving torus can still be character-
ized by two local action coordinates J1 ,J2 via line integrals
�pidqi along pairs of topologically independent closed paths,
the functional relation HC�J1 ,J2� breaks down at the edge of
the integrable regime.

There exists a quantum counterpart to this breakdown, as
will be demonstrated. It can be employed to discriminate
between regimes of integrability and nonintegrability on
purely quantum mechanical grounds. Here we show the
workings of this diagnostic tool �5� in the context of the
spin-boson model �6–9�,

H = ��Ba†a + ��SSz + � cos ��S+a + S−a†�

+ � sin ��S+a† + S−a� , �1�

one of the simplest nontrivial models describing nonrelativ-
istically the interaction between an atom and a radiation
field. This model has also been used to describe the interac-
tion between electronic and vibrational degrees of freedom
in molecules and solids. The relation between classical and
quantum integrability of Eq. �1� has been the object of pre-
vious investigations �8,10�.

The Bose operators a† ,a in Eq. �1� describe one mode
with frequency �B of the electromagnetic field. The spin-	
operators S
=Sx
 iSy ,Sz act in the Hilbert space of a �2	
+1�-level atom with level spacing ��S. The coupling be-

tween the two degrees of freedom has strength � and de-
pends on a continuous parameter � that connects two re-
gimes for which this model is integrable in the classical
limit. The classical integrability for �=0 and � /2 is estab-
lished by a second integral of the motion. The case �=0 is
known as the rotating wave approximation in quantum op-
tics. Early studies in one or the other classical limit of the
spin-boson model revealed chaotic phase space flow turning
regular in the rotating wave approximation �6,7,11,12�.

In the two-dimensional parameter space spanned by the
�polar� coordinates �� ,��, the two integrable regimes are
located on two perpendicular straight lines that intersect each
other at the point of zero coupling strength. Each quadrant of
this parameter plane represents a nonintegrable regime.
Henceforth we consider the parameter range 0����, 0
���� /2.

In preparation for our main theme, we first discuss the
classical integrability condition of the spin-boson model
�Sec. II� and then the classification of its quantum energy
levels �Sec. III� and certain quantum invariants �Sec. IV� by
distinct sets of quantum numbers in the integrable and non-
integrable regimes. This distinction has a deeper meaning,
which we will further discuss in Sec. V, and which we will
employ in Sec. VI for the identification of the two regimes in
purely quantum mechanical terms.

II. INTEGRABILITY CONDITION

In taking the classical limit �→0, 	→� of the spin-
boson model, we renormalize the coupling constant �

= �� /2�3/2�̄, substitute

a = x�M�B/2� + ip/�2�M�B �2�

for the boson operators, and, via ��	�	+1�=s, convert the
spin-	 operator into a classical three-component vector of
fixed length,

�Sx,Sy,Sz� = s�sin � cos �,sin � sin �,cos �� . �3�

The spin-boson Hamiltonian �1� thus turns into the energy
function of two linear one-degree-of-freedom systems—a
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harmonic oscillator and a classical spin in a constant mag-
netic field—with a nonlinear coupling,

H =
p2

2M
+

1

2
M�B

2x2 + �SSz +
1

2
�̄ cos ���M�BxSx

−
1

�M�B

pSy� +
1

2
�̄ sin ���M�BxSx +

1
�M�B

pSy� .

�4�

A set of canonical coordinates is �p ,x ;s cos � ,��. The equa-
tions of motion for the physical variables �x , p ,Sx ,Sy ,Sz� in-
ferred from Eq. �4� via dx /dt=�H /�p, dp /dt=−�H /�x, and
dS /dt=−S
�H /�S read

ẋ =
p

M
+

�̄

2�M�B

Sy�sin � − cos �� , �5a�

ṗ = − M�B
2x −

�̄�M�B

2
Sx�cos � + sin �� , �5b�

Ṡx = − �SSy −
�̄p

2�M�B

Sz�cos � − sin �� , �5c�

Ṡy = �SSx −
�̄x�M�B

2
Sz�cos � + sin �� , �5d�

Ṡz =
�̄x�M�B

2
Sy�cos � + sin �� +

�̄p

2�M�B

Sx�cos � − sin �� .

�5e�

The phase flow generated by these equations is, in general,
chaotic. Chaos gives way to a fully intact torus structure at
�=0,� /2. The integrability of these cases is established by
the fact that one or the other of the two functions

I =
p2

2M�B
+

1

2
M�Bx2 + Sz, �6a�

K =
p2

2M�B
+

1

2
M�Bx2 − Sz, �6b�

whose time evolution is determined by �13�

İ = 	H,I
 = �̄ sin �� pSx

�M�B

− �M�BxSy� , �7a�

K̇ = 	H,K
 = �̄ cos �� pSx

�M�B

+ �M�BxSy� , �7b�

becomes a second integral of the motion. The case �=0 is
known as the Jaynes-Cummings model �14�. The impact of
the classical integrability conditions on the quantum system
is the main theme of this study.

III. ENERGY LEVELS

For the analytic or numerical solution of the spin-boson
model �1�, it is convenient to use the product vectors of the
noninteracting system, �m ,n� , m=0,1 ,2 , . . . ,2	 , n
=0,1 ,2 , . . ., as a basis. The relevant operators act on this
basis as follows:

�	 − Sz��m,n� = m�m,n� , �8a�

S+�m,n� = �m�2	 − m + 1��m − 1,n� , �8b�

S−�m,n� = ��2	 − m��m + 1��m + 1,n� , �8c�

a†�m,n� = �n + 1�m,n + 1� , �8d�

a�m,n� = �n�m,n − 1� . �8e�

The Hamiltonian matrix can thus be assembled from the di-
agonal elements


m,n�Sz�m,n� = 	 − m, 
m,n�a†a�m,n� = n , �9�

and from the off-diagonal elements


m,n�S+a�m + 1,n + 1� = ��2	 − m��m + 1��n + 1� ,


m,n�S−a†�m − 1,n − 1� = ��2	 + 1 − m�mn ,


m,n�S+a†�m + 1,n − 1� = ��2	 − m��m + 1�n ,


m,n�S−a�m − 1,n + 1� = ��2	 + 1 − m�m�n + 1� .

The structure of this matrix is illustrated in Fig. 1. The solid
lines represent matrix elements generated by the first inter-
action term in Eq. �1�, and the dashed lines represent matrix
elements which arise in the second interaction term. The
two-sublattice structure is a reflection of parity conservation.
The parity operator

P = �− 1�a†a+	−Sz �10�

commutes with H for arbitrary � ,�. It divides the eigen-
states into two symmetry classes. States with P= +1 �P
=−1� involve basis vectors with even m+n �odd m+n� only.

0 1 2 ... 2σ

...

2

1

0

m

n

FIG. 1. Basis vectors �m ,n� with positive �full squares� and
negative parity �open squares� as coupled by matrix elements of
operators S+a ,S−a† �solid lines� and S+a† ,S−a �dashed lines� of
Hamiltonian �1�.
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If �=0 only the solid bonds are present and if �=� /2
only the dashed bonds. In either case the Hamiltonian matrix
is reduced to invariant blocks of size 2	+1. If 0���� /2
we must deal with an infinite matrix. In this study we set
�S=�B�� except where indicated otherwise. In the follow-
ing we analyze the level spectrum for various cases at �
=0,� /2.

The integrable spin-boson model with 	= 1
2 involves only

2
2 matrices. If �=0, the eigenvectors happen to be inde-
pendent of the interaction strength,

��1,0� = �1,0� �11a�

��1,n� =
1
�2

	�1,n� + �0,n − 1�
, n = 1,2, . . . , �11b�

��0,n� =
1
�2

	�1,n + 1� − �0,n�
, n = 0,1, . . . , �11c�

and the energy eigenvalues �for n=0,1 ,2 , . . .� are

E1,n = ���n − 1/2� + ��n , �12a�

E0,n = ���n + 1/2� − ��n + 1. �12b�

If �=� /2 the eigenvectors do depend on �:

��1,0� = �0,0� , �13a�

��1,n� = a0,n�0,n� + b0,n�1,n − 1�, n = 1,2, . . . , �13b�

��0,n� = a1,n�0,n + 1� − b1,n+1�1,n�, n = 0,1, . . . ,

�13c�

with

a0,n =
��n − 1

�2��1 − ��n�
, a1,n−1 =

��n − 1

�2��1 + ��n�
,

b0,n =
��n − 1

�2��1 − ��n�
, b1,n−1 =

��n + 1

�2��1 + ��n�
,

where �� �� /���2 and �n�1+n�. The associated energy
eigenvalues �for n=0,1 ,2 , . . .� are

E1,n = ���n − 1/2� + ����n, �14a�

E0,n = ���n + 1/2� − ����n+1. �14b�

Additional results �for 	�
1
2 � can be found in Appendix A. In

all cases pertaining to the integrable regimes �=0 or � /2 the
energy levels are naturally labeled by the two quantum num-
bers m ,n. The parity becomes P= �−1�m+n. In the noninte-
grable regime 0���� /2, by contrast, the numerical analy-
sis suggests that no two energy levels of the same parity
become degenerate or undergo any crossing upon variation
of the parameters � ,� �15�. All levels of a given parity can
thus be unambiguously labeled by a single �energy sorting�
quantum number k.

IV. QUANTUM INVARIANTS

The quantum counterparts to the two analytic invariants
�6a� and �6b� are the operators

I = ��a†a + Sz�, K = ��a†a − Sz� , �15�

which indeed commute with Eq. �1� under exactly the same
conditions as in the classical limit. We have

�H,I� = 2� sin ��S−a − S+a†� , �16a�

�H,K� = 2� cos ��S+a − S−a†� . �16b�

However, quantum integrability cannot be inferred from
quantum invariants as simply as classical integrability can be
inferred from integrals of the motion �analytic invariants�.
Commuting operators can always be constructed irrespective
of whether the model is �classically� integrable or not
�16,17�. The parity operator �10�, for example, which can be
expressed as a function of either invariant I or K,

P = ei��I/�−	� = ei��K/�+	�, �17�

commutes with H for arbitrary �. More generally, any opera-
tor A that is not already an invariant, �H ,A��0, can be
turned into an invariant via time averaging �18,19�. Consider
the matrix elements of A�t� in the energy representation,

��A����ei�E�−E���t/�. Barring degeneracies, the time average
removes all off-diagonal elements:


��A�t����� � lim
T→�

1

T
�

0

�

dt
��A�t����� = 
��A��������.

The resulting operator IA with �diagonal� elements 
��A���
thus commutes with H by construction.

The fact is that in the classical limit neither the parity
operator nor any of the artificially constructed quantum in-
variants will turn into analytic invariants �integrals of the
motion� if the phase flow is chaotic. Such quantum invariants
either lose their meaning altogether or turn into nonanalytic
invariants �19,20�.

The distinctive attributes of quantum invariants in the in-
tegrable and nonintegrable regimes of a quantum system are
subtle but not ambiguous. Here we use

IA = 
A�, A = a†�S− + S+� . �18�

For 	= 1
2 , its eigenvalues at �=0 can be calculated from the

eigenvectors �11a�–�11c�,


A�1,n =
1

2
�n, 
A�0,n = −

1

2
�n + 1, �19�

and its eigenvalues at �=� /2 from the eigenvectors
�13a�–�13c�,


A�1,n =
��n − 1����n − 1�

2��n − ��n�
, �20a�
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A�0,n = −
��n+1 − 1����n+1 + 1�

2��n+1 + ��n+1�
. �20b�

Appendix A contains results for 	�
1
2 . Numerical results of


A�k for 0���� /2 of systems with 	= 1
2 ,1 , 3

2 were re-
ported previously �9�. The patterns of points �Em,n , 
A�m,n�
for integrable cases were found to be strikingly different
from the pattern of points �Ek , 
A�k� for nonintegrable cases.
Here this difference will be used as a demarcation tool for
regimes of integrability and nonintegrability.

V. QUANTUM ACTIONS

One signature of integrability in a quantum system with
two degrees of freedom is that the Hamiltonian can be ex-
pressed as a function of two action operators J1 ,J2, i.e., of
two quantum invariants whose spectra consist of equidistant
levels �1–3�. In the absence of the spin-boson interaction
��=0�, the two action operators are

J1 = ��	 − Sz�, J2 = �a†a , �21�

with integer eigenvalues �in units of ��

J1 = m�, m = 0,1, . . . ,2	 , �22a�

J2 = n�, n = 0,1, . . . , �22b�

as in Eq. �9�. The Hamiltonian H0=��Ba†a+��SSz and the
two quantum invariants �15� are expressible as linear combi-
nations of J1 ,J2.

Classically, the contribution of each degree of freedom to
H0= p2 /2M + 1

2 M�B
2x2+�SSz is transformed into a function

of one action coordinate by a separate canonical transforma-
tion: �Sz ,��→ �J1 ,�1� with Sz=s−J1, �=−�1, and �p ,x�
→ �J2 ,�2� with p=�2J2M�B cos �2, x=�2J2 /M�B sin �2.
The transformed Hamiltonian and the two classical invari-
ants �6a� and �6b� are linear functions of J1 ,J2 just as in
quantum mechanics. The exact quantum spectra of H0 , I ,K
can then be recovered exactly via semiclassical quantization,
i.e., by substituting the actions quantized according to Eqs.
�22a� and �22b� into the classical Hamiltonian.

Classically, the interaction renders the equations of mo-
tion, Eqs. �5a�–�5e�, nonlinear. However, the effects of an-
harmonicity in the time evolution depend sensitively on
whether integrability is sustained or destroyed by the inter-
action. Integrability for �=0,� /2 dictates that the phase
flow is exclusively toroidal. For 0���� /2 chaotic phase
flow is omnipresent, albeit constrained by surviving tori.

Quantum mechanically, the interaction distorts the eigen-
value spectrum and modifies the selection rules of transition
rates. Quantum properties that are as sensitive to the integra-
bility status as their classical counterparts do exist and have
previously been explored in the context of a different model
system �21–23�.

These properties are directly related to the existence of
action operators as constituent elements of the Hamiltonian.
For the noninteracting system we have Eq. �21�. In the inter-
acting cases, the existence of action operators can again be
demonstrated directly for �=0,� /2, and their nonexistence
for 0���� /2 can be demonstrated indirectly.

The unitary transformation which diagonalizes the Hamil-
tonian �1� for 	= 1

2 and �=0, expressed in terms of spin and
boson operators, reads

UA = P0
A +

1
�2

�− 2Sz +
1

�a†a
a†S− + aS+

1
�a†a

Q1
A� ,

where P0
A= �1,0�
1,0�, Q1

A=1− �0,0�
0,0�− �1,0�
1,0�. The
operators

Tz = UASzUA
−1 = P0

ASz −
1

2
G1

A, �23a�

b†b = UAa†aUA
−1 = a†a − SzP0

A +
1

2
G1

A, �23b�

with

G1
A = aS+

1
�a†a

Q1
A +

1
�a†a

a†Ŝ−, �24�

are diagonal in the energy representation:

Tz��m,n� = �	 − m���m,n� , �25a�

b†b��m,n� = n��m,n� . �25b�

Hence the quantum actions with eigenvalues �22a� and �22b�
are

J1 = ��	 − Tz�, J2 = �b†b . �26�

Applying UA to the Hamiltonian yields

UAHUA
−1 = ���b†b + Tz� + ��1 − 2Tz

2
�b†b

−
1 + 2Tz

2
�b†b + 1� , �27�

which, together with Eq. �26�, describes the functional rela-
tion between H and J1 ,J2.

The same method also produces the quantum actions for
the integrable case s= 1

2 ,�=� /2. Here the block-diagonal
unitary transformation UB to be used can also be expressed
in terms of spin and boson operators but has a more compli-
cated structure than UA. The operators

Tz = UBSzUB
−1 =

1

2
P0

B + �GB�Q0
B, �28a�

b†b = UBa†aUB = �a†a − Sz + GB�Q0
B, �28b�

with GB=G1
B+G2

B+G3
B,

G1
B =

1
�16�1 + �a†a�

−
1

�16�1 + ��a†a + 1��
,

G2
B =

Sz

�4�1 + �a†a�
+

Sz

�4�1 + ��a†a + 1��
,
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G3
B =

1 + 2Sz

4�64� + a†a
a†S+ + aS−

1 + 2Sz

4�64� + a†a
,

and P0
B= �0,0�
0,0�, Q0

B=1− �0,0�
0,0�, again satisfy Eqs.
�25a� and �25b� and are related to quantum actions via Eq.
�26�. The functional dependence of the transformed Hamil-
tonian on the actions is different from Eq. �27�:

UBHUB
−1 = ���b†b − Tz� +

1 + 2Tz

2
�1 + �b†b

−
1 − 2Tz

2
�1 + ��b†b + 1� . �29�

UA is the special case for 	= 1
2 of a unitary transformation

U1�	 ,�� that diagonalizes Eq. �1� at �=0 for arbitrary val-
ues of 	. Likewise, UB is the special case for 	= 1

2 of a
unitary transformation U2�	 ,�� that diagonalizes Eq. �1� at
�=� /2 for arbitrary 	 �see Appendix A for additional re-
sults�.

The end product of these unitary transformations

are two functions H̄Q
�1��Tz ,b†b ;��=HQ

�1��J1 ,J2 ;�� and

H̄Q
�2��Tz ,b†b ;��=HQ

�2��J1 ,J2 ;��, which express the functional
dependence of the Hamiltonian on action operators in the
two integrable regimes �=0 and � /2, respectively. The lead-
ing terms of an asymptotic expansion at high boson occu-
pancy and unrestricted spin state of these functions are

H̄Q = ���b†b 
 Tz� + ��b†b + O�1� , �30�

where the operators Tz ,b† ,b again satisfy Eqs. �25a� and
�25b� and the upper �lower� sign pertains to �=0 ��=� /2�.

We expect a semiclassical regime to exist at large
spin and/or boson quantum numbers where the func-
tions HQ

�1��J1 ,J2 ;�� and HQ
�2��J1 ,J2 ;�� connect with

functions HC
�1��J1 ,J2 ;�� and HC

�2��J1 ,J2 ;�� of classical
actions. However, the identification of the semiclassical re-
gime requires a complete solution of the classical equations
of motion �5a�–�5e�, a task still outstanding.

The connections between the quantum and classical func-
tional dependences of Hamiltonian on actions was investi-
gated in a previous study for an integrable two-spin model
and for the �integrable� circular billiard model �23�. There we
found subtle quantum effects that restrict the range of the
semiclassical regime in unexpected ways. That may also be
the case in the spin-boson model. However, the point we
wish to emphasize in this study is a different one.

VI. TRACKING EIGENSTATES

The goal is to demonstrate that the functions
HQ

�1��J1 ,J2 ;�� and HQ
�2��J1 ,J2 ;�� cannot be extended in any

consistent way into the region of nonintegrability in the
�� ,�� plane. The functions HQ

�1� and HQ
�2� make it possible to

label all eigenstates of Eq. �1� by the two action quantum
numbers m ,n as defined in Eqs. �22a� and �22b� and to track
them with no ambiguity through each one of the two inte-
grable regimes �=0 and � /2. The nonextendability of the
two functions HQ

�1� and HQ
�2� into a function HQ�J1 ,J2 ;� ,��

translates into the impossibility of consistently assigning ac-
tion quantum numbers m ,n to the eigenstates in the entire
parameter range 0����, 0���� /2.

One way of keeping track of eigenstates ��� of Eq. �1� is
to determine how the eigenvalues of quantum invariants vary
along some path in the �� ,�� plane. For the purpose of this
demonstration, we focus on the eigenvalues 
H��=E� of the
Hamiltonian �1� with spin quantum number 	= 1

2 and the
eigenvalues 
A�� of the quantum invariant IA as defined in
Eq. �18�.

Within each of the two integrable regimes, both sets of
eigenvalues have an explicitly known �discrete� dependence
on the action quantum numbers �= �m ,n� and an explicitly
known �continuous� dependence on the interaction strength
�. The functional relations are stated in Eqs. �12a�, �12b�,
and �19� for �=0 and Eqs. �14a�, �14b�, �20a�, and �20b� for
�=� /2.

A. Level crossings

In Figs. 2�a� and 2�b� we have plotted one quantum in-
variant versus the other for all states with positive parity up
to a certain energy. In both panels we observe two vertically
displaced rows of states. States in the top and bottom rows
have action quantum numbers �1,n� and �0,n�, respectively.

The observed arrangement of states is due to the fact that

A�m,n��n but Em,n�n in leading order. Notice that the
spacings between successive energy levels in each row vary
slowly, and at different rates in the top and bottom rows. To
enhance the visibility of this effect we have connected suc-
cessive energy levels in each panel by dashed lines. The
spacings are somewhat larger in the top row compared to the
bottom row, causing instances in both panels where two con-
secutive states of the bottom row fit into the space between
two states of the top row. These instances where the alternat-
ing �top-bottom� sequence is broken mark locations where
energy levels from opposite rows can fall arbitrarily close to
each other.

When we increase the interaction strength � gradually,
the states in the top row of Fig. 2�a� move toward the right
and the states in the bottom row toward the left. The same
observation can be made in Fig. 2�b�. Here the shift also
contains a small vertical component. We have singled out
one pair of nearly degenerate states in Fig. 2�a� and another
pair in Fig. 2�b�. Each pair is marked by full circles. In Figs.
3�a� and 3�b� we have plotted the traces of these states in the
plane of invariants as the interaction strength is increased by
a certain amount.

The gradual change of � causes a cascade of level cross-
ings between states from opposite rows. For the two pairs of
tagged states, the crossings occur at the point marked by an
asterisk on their traces. States from opposite rows undergo
level crossings even though they have the same parity. What
matters are the functional relations HQ

�1� and HQ
�2� established

previously. They remove any possible cause for level colli-
sions �avoided crossings� between states from opposite rows
as they move �energetically� in opposite directions when � is
increased.

B. Level collisons

A very different scenario unfurls when we plot the two
quantum invariants for a nonintegrable case. What happens
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when we change the integrability parameter from �=0 �Fig.
2�a�� or from �=� /2 �Fig. 2�b�� to �=� /4 is illustrated in
Fig. 2�c�. Here the states that used to exist in different worlds
�top row with action quantum number m=1 and bottom row
with m=0� now suddenly get into each other’s way. Since

they are prohibited from undergoing any level crossings, it is
now appropriate to label them by the energy sorting quantum
number k.

In those parts of the spectrum where the energy level
spacings are large, the loss of integrability has no visible
effect on the quantum invariants. That is the case near the
left and right border areas of Fig. 2�c�. Here the two rows of
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FIG. 2. Quantum invariant 
A��= 
��a†�S−+S+���� versus quan-
tum invariant E�= 
��H��� over some energy range for the eigen-
states ��� with parity P= +1 of the spin-boson model �1� with 	
=1 /2, ��=1, �� �� /���2=0.09, and �= �a� 0, �b� � /2, and �c�
� /4. In the integrable regimes we use the action quantum numbers
�= �m ,n� and in the nonintegrable regime we use the energy sorting
quantum number �=k. One pair of states in each panel �full circles�
is tagged for further use in Fig. 3.
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FIG. 3. Trace of one pair of eigenstates ��� with parity P= +1
�identified by full circles in Fig. 2� in the plane of quantum invari-
ants �E� , 
A��� as the interaction parameter � is increased a specified
amount at constant value �= �a� 0, �b� � /2, and �c� � /4 of the
integrability parameter. In the integrable regimes we use �= �m ,n�
and in the nonintegrable regime �=k.
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states remain largely intact. However, near the center of the
panel, where small energy level spacings occur, the eigen-
vectors of nearly degenerate levels affect each other strongly.
The most conspicuous effect is a strong vertical displacement
of the two states from the row positions toward each other.
Less conspicuous in Fig. 2�c� but of even greater importance
is the small horizontal displacement of the two nearly degen-
erate states away from each other. The effect of nonintegra-
bility is that energy levels exert a short-distance repulsion on
each other. At the same time, expectation values in general
and the quantum invariant 
A�k in particular tend to become
less differentiated than they were in the integrable case.

When we again increase the interaction strength �, now at
fixed �=� /4 in the nonintegrable regime, we find that no
levels with equal parity ever undergo a crossing. As in the
integrable cases, the states with 
A�k�0 have a tendency to
move toward the right and the states with 
A�k�0 toward the
left.

Inevitably, these trends put states on opposite sides of

A�k=0 on a collision course. When two such states approach
one another, the state starting out with 
A�k�0 swings down
as it moves to the right and the state with 
A�k�0 swings up
as it moves to the left. The two states reach their closest
energetic approach when their vertical positions are about the
same. After that, the state coming from below continues its
upswing, but now it is moving to the right to join the right-
moving upper row of states. Meanwhile, the state coming
from above continues its downswing to join the left-moving
lower row of states. One such level collision, between the
tagged states in Fig. 2�c�, is shown in Fig. 3�c�.

C. Quantum numbers in conflict

Looking at the spectrum of the spin-boson model �1� in
the plane of invariants �E� , 
A��� as the interaction strength �
increases gradually, reveals strikingly different patterns of
coordinated motion of all states with given parity, depending
on whether the parameter � is set to an integrable regime
��=0,� /2� or fixed within the nonintegrable regime �0��
�� /2�.

For �=0 or � /2 �panels �a� and �b�, respectively, of Figs.
2 and 3�, the two rows of states march past each other in an
orderly fashion, undergoing a sequence of level crossings in
complete oblivion of each other’s presence. For �=� /4
�panel �c� of Figs. 2 and 3�, on the other hand, all states are
part of a coordinated clockwise looping motion. While every
individual state maintains the same position in the level se-
quence, the wave-shaped top row of states has the appear-
ance of moving steadily to the right and the bottom row to
the left. The path of an individual state in the plane of in-
variants is not unlike that of an H2O molecule in a traveling
surface water wave.

This qualitative change in pattern caused by different set-
tings of the parameter � requires the assignment of mutually
exclusive sets of quantum numbers to the same set of eigen-
states in different parameter regimes. The action quantum
numbers m ,n are the trademark of quantum integrability.
Their very existence accommodates level crossings between

states of equal parity. The level sorting quantum number k,
on the other hand, is applicable when level crossings be-
tween states of equal parity are prohibited. It is the trademark
of quantum nonintegrability.

This conclusion brings us full circle to the thought experi-
ment on invariant tori described in Sec. I. If we track an
eigenstate along a closed path in the �� ,�� plane, specifi-
cally a path that lies partly inside the integrable regime and
partly outside, its individuality cannot be maintained through
a unique and consistent assignment of quantum numbers. On
a path that first leads a certain stretch through the integrable
regime and then returns through the nonintegrable regime,
the tagged eigenstate may undergo several crossings on the
first leg of this path and will then, on the second leg, be
unable to cross back to its initial position in the level se-
quence. Barring a minor caveat �see Appendix B� this con-
flict in the assignment of quantum numbers to eigenstates is
a dependable detecting device for the demarcation of regimes
of integrability and nonintegrability in quantum systems with
few degrees of freedom.

APPENDIX A: POINTS OF INTEGRABILITY

Here we present additional results for the level spectrum,
quantum invariants, and action operators of the spin-boson
model �1� in the integrable regime, extending the findings of
Secs. III–V to 	�

1
2 . The eigenvalue problem for 	=1 at

integrability involves the solution of cubic equations. Here
we list the ��-independent� eigenvectors and the associated
energy eigenvalues for �=0. We have ��1,0�= �0,0�, ��1,1�
= ��1,0�+ �0,1�� /�2, ��2,1�= ��1,0�− �0,1�� /�2, with energies
E1,0=−��, E1,1=�2�, E2,1=−�2�, respectively, and for n
�2 the results are

��1,n� =� n − 1

4n − 2
�0,n − 2� +

1
�2

�1,n − 1� +� n

4n − 2
�2,n� ,

�A1a�

��2,n� =� n

2n − 1
�0,n − 2� +� n − 1

2n − 1
�2,n� , �A1b�

��3,n� =� n − 1

4n − 2
�0,n − 2� −

1
�2

�1,n − 1� +� n

4n − 2
�2,n� ,

�A1c�

with energies

E1,n = ���n − 1� + ��4n − 2, �A2a�

E2,n = ���n − 1� , �A2b�

E3,n = ���n − 1� − ��4n − 2. �A2c�

A simple analytic solution exists for arbitrary 	 in
the asymptotic regime of large n. Consider the
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�2	+1�-dimensional invariant block of Eq. �1� at �=0
formed by the basis vectors �2	−m ,n−m�, m=0,1 , . . . ,2	.
It is tridiagonal with elements


2	 − m,n − m�H�2	 − m,n − m� = ���n − 	� ,


2	 − m,n − m�H�2	 − m,n − m − 1� = ��2	�n − m� .

For n�	 we can write

H = ���n − 	�E + 2��nSx + O� 	

�n
� , �A3�

where E is the �2	+1�-dimensional unit matrix and Sx is the
irreducible representation of the spin operator with the same
dimensionality. The asymptotic eigenvalues of this matrix
are

Em,n � ���n − 	� + 2��n�	 − m� �A4�

for m=0, . . . ,2	. The corresponding analysis carried out for
�=� /2 yields the matrix

H = ���n − 	�E + 2��Sz + 2��nSx + O� 	

�n
� �A5�

with asymptotic energy eigenvalues �for m=0, . . . ,2	�

Em,n � ���n − 	� + 2����n�	 − m� . �A6�

The quantum invariants �18� for 	=1 and �=0 calculated
from the eigenvectors �A1� are


A�1,n = − 
A�3,n = �n − 1/2, 
A�2,n = 0. �A7�

Asymptotically for large n, we can evaluate the eigenvalues
for arbitrary 	. The results for �=0 read


A�m,n = �	 − m��n , �A8�

and for �=� /2 we have


A�m,n =
�	 − m��n
�1 + 1/n�

. �A9�

The results of Sec. V for action operators are generalizable to
arbitrary 	, albeit at the price of a higher and higher calcu-
lational effort. The case 	=1,�=0 can still be presented
compactly. The unitary transformation UC to be used in this
case is now determined by the eigenvectors �A1� and yields

Tz = UCSzUC
−1 = P0

C − G1
CQ2

C +
1

2
G2

CP1
C, �A10a�

b†b = UCa†aUC
−1 = �a†a + Sz + G1

C�Q1
C +

1

2
G2

CP1
C,

�A10b�

where

G1
C =

Sz
2 − Sz

2�4a†a − 2
a†S− +

1 − Sz
2

�4a†a + 2
aS+

+
1 − Sz

2

�4a†a + 2
a†S− +

Sz + Sz
2

�4a†a + 6
a†S+,

G2
C = 1 +

1 − Sz
2

�2
aS+ +

Sz
2 − Sz

2�2
a†S−,

and P0
C= �0,0�
0,0�, P1

C= �1,0�
1,0�+ �0,1�
0,1�, Q2
C=1− P0

C

− P1
C. The transformed Hamiltonian becomes

UCHUC
−1 = ���b†b + Tz� +

�

�2
	�3Tz

2 − Sz − 2�P1
C

+ ��Tz
2 − Tz��2b†b − 1 − �Tz

2 + Tz��2b†b + 3�Q2
C
 .

Note that the transformations UA �for 	= 1
2 � and UC �for 	

=1�, both pertaining to �=0, are � independent, whereas the
transformation UB, pertaining to �=� /2, is � dependent.

APPENDIX B: POINT OF HIGHER SYMMETRY

Conflicts in the assignment of quantum numbers to eigen-
states may arise for reasons unrelated to nonintegrability. In a
study of a two-spin system �22� two such causes were iden-
tified: �i� the presence of points of higher symmetry inside
the integrable regime; �ii� a multiple connectedness of the
integrable regime in the parameter space. Both causes are
readily identified as extraneous. In the context of the spin-
boson model �1� only the first cause comes into play.

In the following we describe one scenario where two
eigenstates swap positions in the level spectrum when
tracked along a closed path in parameter space, a path that
does not leave the integrable regime. For this purpose we
consider Eq. �1� with 	= 1

2 in the extended parameter space
�� ,�S ,�B� at �=0. The energy eigenvalues

E
 = �n +
1

2
���B 


1

2
�4�2�n + 1� + ���S − ��B�2

�B1�

and the eigenvectors

� + � = cos ��0,n� + sin ��1,n� , �B2a�

�− � = − sin ��0,n� + cos ��1,n� �B2b�

depend on the angular variable

� = arctan
E+ − n��B − 1

2��S

��n + 1
. �B3�

The point of higher symmetry is at �=0,�B=�S. Here the
energy eigenvalues become doubly degenerate �for �B�0�.
We consider the quantum invariant
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Sz�
 = 

1

2
cos 2� �B4�

defined by expectation values in the eigenstates �B2�. The
loop in parameter space is parametrized as follows:

��S = ��B�1 + sin �� , �B5a�

� = ��B�1 − cos �� , �B5b�

where 0���2�. It cuts through the point of higher sym-
metry at �=0. The crucial point is that one complete loop
along this path advances the angle �B3� by ��=� /2, which
interchanges the two states �B2� and does not bring both
invariants �B1� and �B4� back to the same position. It takes
two loops to return the states �
 � to their original identity
and the points �E
 , 
Sz�
� to their original position.
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